1/
*)on pose x=y=0 on a :
[f(0)-2f(0) ]² = 4f(0)²
donc : f(0)² = 4 f(0)²
===> f(0) = 0
*)on pose x=-y
on a: [ f(0) - f(x) - f(-x) ]² = 4f(x)f(-x)
==> f(x)² + 2f(x)f(-x) + f(-x)² = 4f(x)f(-x)
==> f(x)² - 2f(x)f(-x) + f(-x)² =0
==> [f(x) -f(-x)]² = 0
==> f(x) = f(-x)
==> f est paire
*)on pose y = 1 on a :
[f(x+1) - f(x) -1]² = 4f(x)
==> f(x) = [f(x+1) - f(x) -1]² / 4
==> f(x) >=0
*)on pose : y = x on a:
[f(2x) - 2f(x) ]² = [2f(x)]²
f(2x)[f(2x) - 4f(x)] =0
==> f(2x) =0 ou f(2x) = 4 f(x)
2/
*)on a : [ f(x+y) - f(x) - f(y) ]² = 4f(x)f(y)
==> V([ f(x+y) - f(x) - f(y) ]²) = V(4f(x)f(y))
==> l f(x+y) - f(x) - f(y) l = 2V(f(x)f(y))
et on sait que : l f(x+y) - f(x) l - l f(y) l =< l f(x+y) - f(x) - f(y) l
==> l f(x+y) - f(x) l =< 2V(f(x)f(y)) + f(y)
suffit de calculer la limite